Before the lecture begins ...

» Go to hiip://pclx.com/itcc, download
Homework 1/1b, and complete it.

 Review the Lecture 2 slides.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.

Intro to C++

Lecture 2

Variables, Mathematics, while loops, for
loops

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 2

A Note on Windowed vs. Full Screen

« Games usually are first developed in
Windowed mode — only when everything
works are they typically tried in full screen.

« Why? Windowed mode has fewer fatal
crashes, is easier to debug, and it doesn't
have time-consuming monitor switching.

* |f full screen debugging is necessary,
programmers often use a second monitor
or debug from a remote machine.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm

Variables

« Sometimes we need to store a value. We can
do this using a variable, memory that is
reserved for storing a value.

 All data in a computer is stored the same way —
as a number. How a program interprets this
number gives rise to more complex abstractions
such as characters, graphics, and audio.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm

ASCII

- One example of interpreting numbers as
characters is the ASCII code. This code is the
most popular way to use numbers to encode
letters in a computer.

* In ASCII, for instance, the number '65’ stands for
‘A, 97 s ‘a’, and 32" represents a space.
* There were originally 128 possible numbers in

ASCII, but to represent international characters,
another 128 were added for a total of 256.

 Text files saved with the extension .ixt are
encoded using ASCII.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 5

How Memory Works

* The most fundamental unit of computer
memory Is the bit. A bit can only be set to
two states — either ‘1’ (on) or ‘0’ (off).

* Memory is comprised of trillions of bits,
and by manipulating these, we can store
data.

* How can we store a number using bits?

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm

Base-10

 We are used to a base-10 (decimal) number system —
each digit can have one of ten possible states (0, 1, 2, 3,
4,5, 6, 7,8,9). Note that any number in a base-10
system can be decomposed into powers of ten as
follows:

13, =1x10' +3x10° =10+3
8752, = 8x10° +7x10° +5x10' +2x10° = 8000 + 700+ 50 + 2

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 7

Base-2

* Note that bits constitute a base-2 (binary) number system
because each digit can only have one of two states (0, 1).
Hence,

10, =1x2'+0x2° =2+0=2,
1101, =1x2° +1x2° +0x2' +1x2° =8+4+0+1=13,

« From this, we have just figured out how we can store
numbers by using lots of on/off switches (bits)'

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 8

The Byte

» Let's assume that we have a byte, eight bits, of
memory:

» Bit 7 is the most significant bit (MSB). When
decomposed, it adds value*2’ to the total sum.

 Bit 0 is the least significant bit (LSB). When
decomposed, it adds value*2° to the total sum.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm

The Byte

« What is the smallest value we can store in a
byte? The smallest must be made of all zeros:

0000 0000, =0x2" +0x2° +0x2° +0x2* +0x2° +0x2° +0x2' +0x2° =
0+0+0+0+0+0+0+0=0,

 What is the largest value we can store in a
byte? It must be constructed of all ones:

11111111, =1x2" +1x2° +1x2° +1x2* +1x 27 +1x 2> +1x2' +1x2° =
128+64+32+16+8+4+2+1=255,,

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 10

The Byte

« Smallest number: 0,4,
Largest number: 255,,

 Thus, we can store all numbers between 0 and
255 (inclusive) in a byte, meaning that there are
256 unigue numbers that can be stored (1
through 255 in addition to the number 0).

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm

11

Data Types

 Remember how it takes 256 different
numbers to represent one international
character using ASCII?

* In C/C++, a byte is a char (‘character’).
However, remember that a number is
stored in a char — one interpretation of that
number is as an ASCII character.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 12

Negative Numbers

« So how are negative numbers stored?

/7165143121 |0

 |f the most significant bit (bit 7) is on, then the number in
bits © @Gs negative. If it is off, then the number is positive.

* Note, however, that now our minimum is- 17 and our
maximum is +127. Including zero, there are now only 255
possible numbers (127 + 127 + zero)!

« Why? Note that now, zero can be represented two ways —
either as 1000 0000, or 0000 0000, since zero is neither
positive nor negative.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 13

32-bit Processors?!

* What does it mean when we say a
processor is 32-bit?

 Different types of memory are available in
a computer. In general, memory that is
closer to the processor can be accessed
faster.

 Thus, RAM installed on the motherboard is
faster to access than your hard drive.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 14

32-bit Processors?!

* There is also memory (made up of “registers”)
that is stored on the same chip as the
microprocessor!

« Oftentimes, the microprocessor is optimized to
manipulate numbers that are a certain number
of bits long, and this optimal number is often
reflected by the size of the registers.

 This optimal value is 32-bits for most modern-
day processors, hence their name.

* You can automatically allocate this optimal
number of bits in C/C++ by using the data type
int (integer).

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 15

Data Types

 Variable types in C/C++:
— char (character), 8 bits (256 combinations)
— short int (integer), 16 bits (65,537)
—long int (integer), 32 bits (4,294,967,297)

—Int (integer), equivalent to long int on 32-bit
Processors

» short int can be abbreviated to short, and
long int can be abbreviated to long.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 16

Declaring Variables

« When we declare variables, we allocate, or set aside, a
certain number of bits of memory to store a value.

char myVar;

« This allocates 8 bits of memory which can be read and
written to by using the variable myVar.

char myVar = 5;

« This allocates 8 bits of memory, then it initializes those
8 bits to store the value 5 (0000 0101,).

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 17

Variable Scope

« Variables can be local or global in scope:

— Global. Is created at the program’s execution and
destroyed when the program exits. If a variable is
declared outside any braces (for example, above the
main() function), then the variable will exist for the
entire program duration.

— Local: Is created and destroyed in the middle of a
program’s execution. If a variable is declared within a
pair of braces, then the variable has local scope — it is
allocated at the point of declaration and destroyed at
the ending brace.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 18

Data Type Prefixes

« We can also add prefixes to the data type of a variable,
for instance to determine whether a variable can store
negative numbers:

— signed — can be either positive or negative
— unsigned — can only be positive

- By default, newly declared variables are signed.

unsigned char myVar;
« myVar can store a number from 0 to +255.

signed char myVar;
« myVar can store a number from -127 to +127.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 19

The Assignment Operator

« At any point in our program, we can assign a variable a
value using the assignment operator =:.

myVar = 5;

 Whenever we use a variable name, we are referring to
whatever value is stored in the memory location the
variable references. Note that the assignment is not
made until the entire right rand expression is evaluated.

numLives = 5 — startingLeveI; // sets numLives based on startingLevel
numLives = numLives + 1 , // adds one to numLives

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 20

Mathematics Operators

Five basic mathematics operators:
+ Addition
— Subtraction
* Multiplication

Division

~

o\°

Modulus (Remainder)

Note, however, that expressions being stored into an integer variable
are always truncated — any fractional portion is ignored:

long myVar,;
« myVar =5/2; (therefore, myVar = 2)
« myVar = 3 * 1.5; (therefore, myVar = 4)

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 21

The Modulus Operator (%)

The modulus operator (%) performs a
division then takes the remainder as the
result instead of the whole number:

 myVar=1%2;(1/2=0+ 1/2, myVar =1)
« myVar=5% 3; (5/3 =1+ 2/3, myVar = 2)
* myVar=8 % 8; (8/8 =1+ 0/8, myVar = 0)

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 22

Prefix/Postfix

 There are shorthands that can be used:

numLives += 1 , // numLives = numLives + 1
currHealth - =50: // currHealth = currHealth - 50

 Also note the prefix/postfix operators ++/--:

++numLives; // increments numLives by 1 BEFORE the statement is evaluated.
-- currHeaIth; // decrements numLives by 1 BEFORE the statement is evaluated.

numLives++; // increments numLives by 1 AFTER the statement is evaluated.
currHealth - ; // decrements numLives by 1 AFTER the statement is evaluated.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 23

Using Variables in if Statements

 The comparison operators:
< less than

> Greater than

<= less than or equal to

>= greater than or equal to

!'= not equal to

== equal to // NOTE: DO NOT CONFUSE COMPARISON WITH ASSIGNMENT!!!!

Comparisons are made within if statements. Each comparison
results in a TRUE or FALSE response that the if statement acts on:

if (xPos > 640) if (guess == number) // note the ‘==, NOT ‘=
{ {

xPos = 640: itcc->Text(0,0, “You win!”, RGB(255,255,255));
} }

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 24

What can | do now?

At this point, you have enough knowledge
to make a simple game! By making the x
and y values in itcc->SetPixel variables,
you can change their positions if, say, the
user presses an arrow key.

 Try starting with a ball bouncing off the
sides of the screen, then if that works, try
adding some paddles (this activity will
probably be in the coming homework)!

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 25

Case Study: Storing a Pixel

* The bit depth of a video resolution corresponds
to the number of bits that are required to display
a single pixel.

* For instance, 24-bit color has an 8-bit channel

for red, one for green, and one for blue, for a
total of 24 bits.

« 32-bit color also has three 8-bit RGB channels —
the remaining 8 bits are often used for padding,
unused memory, so we can achieve the optimal
number of bits for the 32-bit processor and thus
perform operations faster.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 26

Storing a Pixel

* Note that a long int in C/C++ is 32-bits long, so we can
store one 32-bit color pixel as a long int in C/C++.

* Here's how a pure red 32-bit pixel is stored in memory:

PADDING RED GREEN BLUE
ojojlofoflo|loO]oO]|oO 11111 f1]1 ojojlofoflo|loO]oO]|oO ojojlofoflo|lO]oO]|oO
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

« Converting this binary value to decimal, we get:
1x27 +1x 27 +1x 27 +1x 2% +1x 2" +1x2"° +1x2" +1x2'° =

=16711680,,
« Thus, for 32-bit color, long redPixel = 16711680;

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 27

32-bit Color

 Also note that since there are 8 bits per
channel (256 intensities) and three
channels (RGB), then it is possible to
display 256x256x256 = 1.68 million colors.

« Can we write a program that will take as
input three values — a percentage of red, a
percentage of green, and a percentage of
blue — then display that color pixel on the
screen?

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 28

Percentage Conversion

« First, we'll get three values as input:

unsigned long red = 0;

unsigned long green = 0;

unsigned long blue = 0;

unsigned long finalColor = 0;

red = itcc—->GetInt (“Enter red percentage (0-100%) :");
green = itcc—>GetInt (“Enter green percentage (0-100%):");
blue = itcc->GetInt (“Enter blue percentage (0-100%):");

* Next, we'll scale the values so instead of being between
0 and 100, they are between 0 and 255:

red = (unsigned long) (red * 2.55);
green = (unsigned long) (green * 2.55);
blue = (unsigned long) (blue * 2.55);

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 29

Bit Shifting

* Note in base-10 that if we shift all of the digits of
a number to the left and insert zeros on the right,
we multiply by 107, where nis the number of bits
shifted. Shifting the digits to the right is a division
by 10".

« Similarly, in base-2, a left shift is a multiplication
by 2" and a right shift is a division by 2" (note
that this is ONLY when the variable is stored as
an unsigned integer!)

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 30

Bit Shifting

« S0 how are we going to get the variables
red, green, and blue into the right places in
the long int?

* One method is to use bit shifting to
“slide” the bits into place.

* In C/C++, the operator << shifts bits to the
left, and >> shifts bits to the right:

unsigned int time = totalTime >> 2; // divides by 4

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 31

Pixel Packing

 Finally, since each value is now between 0
and 255, we can pack the ints into one 32-bit
value and display it:

finalColor = (red << 16) + (green << 8) + Dblue;
itcc—->SetPixel (0,0, finalColor);

 Looking at the RGB32 macro we were using
for itcc->SetPixel we find the same method:

#define RGB32(r,g,b) (((r) << 16) + ((g) << 8) + (b))

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm

32

TODO

Download ITCC_HW2.zip from the site (will not be
avalilable until Wednesday, July 7)
hitp://www.pclx.com/iticc/, and complete the homework
exercises, emailing them (FOR THIS WEEK ONLY) to
itcc_teachers@pclx.com. Please do not resubmit
solutions, even If they are revised. All homework must be
submitted by 6:00am PST Monday, July 12.

Some illustrative examples of the topics in this lecture
are given in ITCC_HW2.zip.

If you still have problems compiling the framework,
please make sure to get in contact with us!

Look over the slides for the third lecture before
Thursday, July 8.

If you finish with the homework, experiment!

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 33

