
ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 1

Before the lecture begins …

• Go to http://pclx.com/itcc, download
Homework 1/1b, and complete it.

• Review the Lecture 2 slides.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 2

Lecture 2

Variables, Mathematics, while loops, for
loops

Intro to C++

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 3

A Note on Windowed vs. Full Screen

• Games usually are first developed in
Windowed mode – only when everything
works are they typically tried in full screen.

• Why? Windowed mode has fewer fatal
crashes, is easier to debug, and it doesn’t
have time-consuming monitor switching.

• If full screen debugging is necessary,
programmers often use a second monitor
or debug from a remote machine.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 4

Variables

• Sometimes we need to store a value. We can
do this using a variable, memory that is
reserved for storing a value.

• All data in a computer is stored the same way –
as a number. How a program interprets this
number gives rise to more complex abstractions
such as characters, graphics, and audio.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 5

ASCII

• One example of interpreting numbers as
characters is the ASCII code. This code is the
most popular way to use numbers to encode
letters in a computer.

• In ASCII, for instance, the number ’65’ stands for
‘A’, ’97’ is ‘a’, and ’32’ represents a space.

• There were originally 128 possible numbers in
ASCII, but to represent international characters,
another 128 were added for a total of 256.

• Text files saved with the extension .txt are
encoded using ASCII.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 6

How Memory Works

• The most fundamental unit of computer
memory is the bit. A bit can only be set to
two states – either ‘1’ (on) or ‘0’ (off).

• Memory is comprised of trillions of bits,
and by manipulating these, we can store
data.

• How can we store a number using bits?

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 7

Base-10

• We are used to a base-10 (decimal) number system –
each digit can have one of ten possible states (0, 1, 2, 3,
4, 5, 6, 7, 8, 9). Note that any number in a base-10
system can be decomposed into powers of ten as
follows:

1 0
10 10 10 10 3= × + × = +13 1 3

3 2 1 0
10 10 10 10 10 8000 700 50 2= × + × + × + × = + + +8752 8 7 5 2

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 8

Base-2

• Note that bits constitute a base-2 (binary) number system
because each digit can only have one of two states (0, 1).
Hence,

• From this, we have just figured out how we can store
numbers by using lots of on/off switches (bits)!

1 0
2 102 2 2 0 2= × + × = + =10 1 0

3 2 1 0
2 102 2 2 2 8 4 0 1 13= × + × + × + × = + + + =1101 1 1 0 1

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 9

The Byte

• Let’s assume that we have a byte, eight bits, of
memory:

• Bit 7 is the most significant bit (MSB). When
decomposed, it adds value*27 to the total sum.

• Bit 0 is the least significant bit (LSB). When
decomposed, it adds value*20 to the total sum.

01234567

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 10

The Byte

• What is the smallest value we can store in a
byte? The smallest must be made of all zeros:

• What is the largest value we can store in a
byte? It must be constructed of all ones:

7 6 5 4 3 2 1 0
2

10

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0

= × + × + × + × + × + × + × + × =
+ + + + + + + =

0000 0000 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
2

10

2 2 2 2 2 2 2 2

128 64 32 16 8 4 2 1 255

= × + × + × + × + × + × + × + × =
+ + + + + + + =

1111 1111 1 1 1 1 1 1 1 1

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 11

The Byte

• Smallest number: 010
Largest number: 25510

• Thus, we can store all numbers between 0 and
255 (inclusive) in a byte, meaning that there are
256 unique numbers that can be stored (1
through 255 in addition to the number 0).

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 12

Data Types

• Remember how it takes 256 different
numbers to represent one international
character using ASCII?

• In C/C++, a byte is a char (‘character’).
However, remember that a number is
stored in a char – one interpretation of that
number is as an ASCII character.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 13

Negative Numbers
• So how are negative numbers stored?

• If the most significant bit (bit 7) is on, then the number in
bits 0- 6 is negative. If it is off, then the number is positive.

• Note, however, that now our minimum is - 127 and our
maximum is +127. Including zero, there are now only 255
possible numbers (127 + 127 + zero)!

• Why? Note that now, zero can be represented two ways –
either as 1000 00002 or 0000 00002 since zero is neither
positive nor negative.

01234567

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 14

32-bit Processors?!

• What does it mean when we say a
processor is 32-bit?

• Different types of memory are available in
a computer. In general, memory that is
closer to the processor can be accessed
faster.

• Thus, RAM installed on the motherboard is
faster to access than your hard drive.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 15

32-bit Processors?!

• There is also memory (made up of “registers”)
that is stored on the same chip as the
microprocessor!

• Oftentimes, the microprocessor is optimized to
manipulate numbers that are a certain number
of bits long, and this optimal number is often
reflected by the size of the registers.

• This optimal value is 32-bits for most modern-
day processors, hence their name.

• You can automatically allocate this optimal
number of bits in C/C++ by using the data type
int (integer).

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 16

Data Types

• Variable types in C/C++:
– char (character), 8 bits (256 combinations)
– short int (integer), 16 bits (65,537)
– long int (integer), 32 bits (4,294,967,297)
– int (integer), equivalent to long int on 32-bit

processors

• short int can be abbreviated to short, and
long int can be abbreviated to long.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 17

Declaring Variables

• When we declare variables, we allocate, or set aside, a
certain number of bits of memory to store a value.

char myVar;
• This allocates 8 bits of memory which can be read and

written to by using the variable myVar.

char myVar = 5;
• This allocates 8 bits of memory, then it initializes those

8 bits to store the value 5 (0000 01012).

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 18

Variable Scope

• Variables can be local or global in scope:
– Global: Is created at the program’s execution and

destroyed when the program exits. If a variable is
declared outside any braces (for example, above the
main() function), then the variable will exist for the
entire program duration.

– Local: Is created and destroyed in the middle of a
program’s execution. If a variable is declared within a
pair of braces, then the variable has local scope – it is
allocated at the point of declaration and destroyed at
the ending brace.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 19

Data Type Prefixes
• We can also add prefixes to the data type of a variable,

for instance to determine whether a variable can store
negative numbers:
– signed – can be either positive or negative
– unsigned – can only be positive

• By default, newly declared variables are signed.

unsigned char myVar;
• myVar can store a number from 0 to +255.

signed char myVar;
• myVar can store a number from -127 to +127.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 20

The Assignment Operator
• At any point in our program, we can assign a variable a

value using the assignment operator =:
myVar = 5;

• Whenever we use a variable name, we are referring to
whatever value is stored in the memory location the
variable references. Note that the assignment is not
made until the entire right- hand expression is evaluated.

numLives = 5 – startingLevel; // sets numLives based on startingLevel

numLives = numLives + 1; // adds one to numLives

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 21

Mathematics Operators

Five basic mathematics operators:
• + Addition

• - Subtraction

• * Multiplication

• / Division

• % Modulus (Remainder)

Note, however, that expressions being stored into an integer variable
are always truncated – any fractional portion is ignored:

long myVar;
• myVar = 5 / 2; (therefore, myVar = 2)
• myVar = 3 * 1.5; (therefore, myVar = 4)

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 22

The Modulus Operator (%)

The modulus operator (%) performs a
division then takes the remainder as the
result instead of the whole number:

• myVar = 1 % 2; (1/2 = 0 + 1/2, myVar = 1)
• myVar = 5 % 3; (5/3 = 1 + 2/3, myVar = 2)
• myVar = 8 % 8; (8/8 = 1 + 0/8, myVar = 0)

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 23

Prefix/Postfix

• There are shorthands that can be used:
numLives += 1; // numLives = numLives + 1

currHealth - = 50; // currHealth = currHealth - 50

• Also note the prefix/postfix operators ++/--:
++numLives; // increments numLives by 1 BEFORE the statement is evaluated.

-- currHealth; // decrements numLives by 1 BEFORE the statement is evaluated.

numLives++; // increments numLives by 1 AFTER the statement is evaluated.

currHealth- - ; // decrements numLives by 1 AFTER the statement is evaluated.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 24

Using Variables in if Statements
• The comparison operators:
< less than

> Greater than

<= less than or equal to

>= greater than or equal to

!= not equal to

== equal to // NOTE: DO NOT CONFUSE COMPARISON WITH ASSIGNMENT!!!!

• Comparisons are made within if statements. Each comparison
results in a TRUE or FALSE response that the if statement acts on:

if (xPos > 640)
{

xPos = 640;
}

if (guess == number) // note the ‘==‘, NOT ‘=‘
{

itcc->Text(0,0, “You win!”, RGB(255,255,255));

}

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 25

What can I do now?

• At this point, you have enough knowledge
to make a simple game! By making the x
and y values in itcc->SetPixel variables,
you can change their positions if, say, the
user presses an arrow key.

• Try starting with a ball bouncing off the
sides of the screen, then if that works, try
adding some paddles (this activity will
probably be in the coming homework)!

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 26

Case Study: Storing a Pixel

• The bit depth of a video resolution corresponds
to the number of bits that are required to display
a single pixel.

• For instance, 24-bit color has an 8-bit channel
for red, one for green, and one for blue, for a
total of 24 bits.

• 32-bit color also has three 8-bit RGB channels –
the remaining 8 bits are often used for padding,
unused memory, so we can achieve the optimal
number of bits for the 32-bit processor and thus
perform operations faster.

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 27

• Note that a long int in C/C++ is 32-bits long, so we can
store one 32-bit color pixel as a long int in C/C++.

• Here’s how a pure red 32-bit pixel is stored in memory:

• Converting this binary value to decimal, we get:

• Thus, for 32-bit color, long redPixel = 16711680;

Storing a Pixel

01234567

00000000

89101112131415

00000000

1617181920212223

11111111

2425262728293031

00000000

PADDING RED GREEN BLUE

23 22 21 20 19 18 17 16

10

2 2 2 2 2 2 2 2
16711680
× + × + × + × + × + × + × + × =

=
1 1 1 1 1 1 1 1

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 28

32-bit Color

• Also note that since there are 8 bits per
channel (256 intensities) and three
channels (RGB), then it is possible to
display 256x256x256 = 1.68 million colors.

• Can we write a program that will take as
input three values – a percentage of red, a
percentage of green, and a percentage of
blue – then display that color pixel on the
screen?

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 29

Percentage Conversion

• First, we’ll get three values as input:
unsigned long red = 0;

unsigned long green = 0;

unsigned long blue = 0;

unsigned long finalColor = 0;

red = itcc->GetInt(“Enter red percentage (0-100%):”);

green = itcc->GetInt(“Enter green percentage (0-100%):”);

blue = itcc->GetInt(“Enter blue percentage (0-100%):”);

• Next, we’ll scale the values so instead of being between
0 and 100, they are between 0 and 255:

red = (unsigned long)(red * 2.55);

green = (unsigned long)(green * 2.55);

blue = (unsigned long)(blue * 2.55);

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 30

Bit Shifting

• Note in base-10 that if we shift all of the digits of
a number to the left and insert zeros on the right,
we multiply by 10n, where n is the number of bits
shifted. Shifting the digits to the right is a division
by 10n.

• Similarly, in base-2, a left shift is a multiplication
by 2n and a right shift is a division by 2n (note
that this is ONLY when the variable is stored as
an unsigned integer!)

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 31

Bit Shifting

• So how are we going to get the variables
red, green, and blue into the right places in
the long int?

• One method is to use bit shifting to
“slide” the bits into place.

• In C/C++, the operator << shifts bits to the
left, and >> shifts bits to the right:

unsigned int time = totalTime >> 2; // divides by 4

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 32

Pixel Packing
• Finally, since each value is now between 0

and 255, we can pack the ints into one 32-bit
value and display it:

finalColor = (red << 16) + (green << 8) + blue;

itcc->SetPixel(0,0, finalColor);

• Looking at the RGB32 macro we were using
for itcc->SetPixel we find the same method:

#define RGB32(r,g,b) (((r) << 16) + ((g) << 8) + (b))

ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 33

TODO

• Download ITCC_HW2.zip from the site (will not be
available until Wednesday, July 7)
http://www.pclx.com/itcc/, and complete the homework
exercises, emailing them (FOR THIS WEEK ONLY) to
itcc_teachers@pclx.com. Please do not resubmit
solutions, even if they are revised. All homework must be
submitted by 6:00am PST Monday, July 12.

• Some illustrative examples of the topics in this lecture
are given in ITCC_HW2.zip.

• If you still have problems compiling the framework,
please make sure to get in contact with us!

• Look over the slides for the third lecture before
Thursday, July 8.

• If you finish with the homework, experiment!

