
ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 1

Before the lecture begins …

• Make sure you have Homework 1/1b 
turned in.

• Review the Lecture 3 slides.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 2

Lecture 3

while loops, for loops, casting, order of 
operations

Intro to C++

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 3

Loops

• A loop occurs when certain portions of 
code are executed more than once in 
succession.

• Loops are important in computing to save 
time writing code, save hard drive space, 
and to manipulate data that has a size 
undeterminable at compilation time.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 4

while loop

• A loop you are already familiar with is the while 
loop, which says, ‘While a condition is true, 
execute the commands in braces’.

• In the graphics framework, a while loop is used 
to render graphics while the escape key is not 
pressed.

• Notice that just like with if statements, the while
loop tests whether the condition in parentheses 
is true before making a decision.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 5

while Loop Example
int done = 1;
while (!done)
{

// Commands here
}

• Will the code inside the while loop ever be 
executed in this scenario?

• Remember that in C/C++, true is any non-zero 
number and that the ‘!’ symbol is read as ‘not’. 

• Thus, the commands will not be executed 
because first, done is evaluated to be true (it is 
0). Then, due to the ‘!’, its value is negated to 
false which does not satisfy the loop’s ‘while the 
condition is true…’



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 6

do-while Loop

• Another related type of loop is the do-
while loop. It is exactly the same as the 
while loop except that the conditional 
expression is evaluated at the end of the 
loop instead of at the beginning, 
guaranteeing that the code in braces is 
executed at least once.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 7

do-while Loop Example
int done = 1;

do 

{

// Commands here

} while (!done);

• Will the code inside the do-while loop ever be 
executed in this scenario?

• Yes! Although the loop will terminate once the 
expression !done is evaluated, the evaluation 
does not occur until the bottom of the loop, 
meaning that the commands will be executed 
once.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 8

When to Use while/do-while Loops

• You have a single variable to test for each 
iteration.

• No counters are dependent on the loop iteration.
• Use while when you only want to execute the loop 

commands if the condition is true (e.g. set off an 
alarm only while the door is touched).

• Use do-while when you want to execute the inside 
at least once (e.g. when drawing a menu and 
asking the user which choice he wants, continually 
draw it until he enters a valid choice).



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 9

for Loops

• The for loop usually is used when a loop must 
execute a predefined number of times.

• This loop has a counter that increments every 
loop iteration so you can also easily tell which 
iteration you’re at and use that in your 
calculations. The loop also allows you to 
initialize the counter to a set value when the loop 
is first begun.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 10

for Loop Example
int i = 1;

for(i=0; i<10; i++)

{

// Commands to be executed

}

1. i is initialized to zero.
2. If i is less than ten, the commands are 

executed.
3. i is incremented by one.
4. Go to 2.

int i = 0;
while(i<10)
{

// Commands to be executed

i++;
}

equivalent



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 11

for Loop Example
int linePos = 1;

for(linePos=0; linePos<10; linePos+=2)

{

itcc->SetPixel(xPos+linePos, yPos, RGB32(255,255,255));

}

Here, we draw a dotted horizontal line, beginning 
at the coordinates (xPos, yPos) (note that 
linePos = 0) and ending at the coordinates 
(xPos + 9, yPos) (linePos = 9), for a total of ten 
pixels.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 12

Casting
Problem:
long myScore = 100;
unsigned long totalScore = 0;

myScore = totalScore;

• What’s the problem here? totalScore can potentially be 
larger than myScore, resulting in data loss!

• But what if we know for sure that totalScore will be able 
to fit inside myScore?

• We can cast the variable – this is a technique used to 
tell the compiler that we realize that the fit is not perfect, 
and that we understand the possible consequences, but 
that we want to do this anyway.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 13

Solution:
long myScore = 100;

unsigned long totalScore = 0;

myScore = (long)totalScore;

• To perform a cast, merely put the data 
type the variable will end up as in 
parentheses in front of the entire 
expression you want converted.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 14

Casting

• There are many times in C/C++ where casting is 
necessary, although it should be attempted as 
infrequently as possible.

• Why? Not only might this actually lead to hard-to-
find errors when converting, but it is usually a very 
slow process (especially when converting 
between floating point numbers and integers!).



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 15

Order of Operations

• As taught in mathematics courses, when 
lots of mathematics symbols are all 
jumbled together in an expression, don’t 
some take precedence over others?

• Look this up on the Internet for more 
detailed charts, but see the next slide for 
the order of operations for a few operators 
we’ve investigated so far!



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 16

Order of Operations

• Parentheses are always evaluated first!
• Prefix/postfix increment/decrement 

operators are evaluated.
• Multiplications and divisions are 

evaluated from left to right.
• Additions and subtractions are 

evaluated from left to right.
• Bit shifts are the last mathematical 

operators to be evaluated.



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 17

Order of Operations Example
color = red << 16 + green / 4<< 8 + blue;

• Will this work correctly? NO! First, the division is evaluated –
green/4 (as we want). However, bit shifts are performed AFTER 
addition, so we need to place parentheses around the bit shifts:

color = (red << 16) + ((green / 4) << 8) + blue;

• It’s safest to use parentheses when you’re not sure – better safe 
than sorry, because these errors are tough to catch!



ITCC, Lecture 2 (C) 2004 Daniel Wilhelm 18

TODO

• Download ITCC_HW2.zip from the site (will not be available until
Wednesday, July 7) http://www.pclx.com/itcc/, and complete the 
homework exercises, emailing them (FOR THIS WEEK ONLY) to 
itcc_teachers@pclx.com. Please do not resubmit solutions, even if 
they are revised. All homework must be submitted by 6:00am PST 
Monday, July 12.

• Some illustrative examples of the topics in this lecture are given in 
ITCC_HW2.zip.

• If you still have problems compiling the framework, please make 
sure to get in contact with us IMMEDIATELY!

• Look over the slides for the third lecture before Monday, July 12.
• If you finish with the homework, experiment!


