
ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 1

Before the lecture begins …

• Make sure you have Homework 2 turned
in.

• Please update your framework at
http://pclx.com/itcc for a version that *will*
work on your compiler. Dev-C++ (g++) is
now supported as well thanks to one of
your classmates.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 2

Lecture 4

Pong review

Intro to C++

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 3

How do I make a game?

• A computer game has many different parts
to it, notably:
– Initialization
– Render Graphics
– Game Logic
– User Input
– Shutdown

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 4

The Game Flowchart

•Initialization
•Render Graphics
•Game Logic
•User Input
•Shutdown

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 5

Pong: Where Do We Begin?

• Let’s start out with rendering the
graphics, since that’s the fun part.

• So first, let’s brainstorm what objects
we need to draw:
– Ball
– Two paddles
– Upper and lower screen boundaries

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 6

Pong: Screen Boundaries

• Let’s begin with the easiest item to draw –
the screen boundaries. Why is this easy?
Because they won’t move at all throughout
the game.

• So I want two horizontal lines to appear on
the screen, one at the top and one at the
bottom. I’ll make them dashed just for fun.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 7

Pong: Screen Boundaries
// Draw the top/bottom screen boundaries as dotted lines
for (xIndex=0; xIndex<xRes; xIndex+=2)
{

itcc->SetPixel(xIndex, 0, screenBoundColor);
itcc->SetPixel(xIndex, yRes-1, screenBoundColor);

}

A few things to note:
• The variable names I’ve used are descriptive.
• The screen resolution is stored in yRes so I don’t have to
rewrite all of this code every time I change the resolution.
• The comment describes the function of the code block rather
than give a literal description.
• ‘i’ isn’t used as the counter variable, but something a little
more descriptive (‘xIndex’) is used instead.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 8

Pong: Screen Boundaries

• Now that I’ve written the code to display the
boundaries, let’s see what variables need to be
declared and declare them:

int xRes = 640, yRes = 480; // height (y) and width (x) of screen
int xIndex = 0, yIndex = 0; // for loop indices

unsigned long screenBoundColor = RGB32(0, 255, 255); // cyan

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 9

Pong: Drawing the Ball
// Draw the ball
for (xIndex=0; xIndex<ballHeight; xIndex++)
{

for (yIndex=0; yIndex<ballHeight; yIndex++)
{

itcc->SetPixel(xBall + xIndex, yBall + yIndex, ballColor);
}

}

A few things to note:
• In general, you don’t want to use constant numbers such as
‘640’ in your code (it can get really confusing), so in the above
everything is done symbolically.
• The above code will draw a ballHeightxballHeight ball on the
screen with the upper left pixel at (xBall, yBall).
• We use two for loops to draw two dimensions of pixels

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 10

Pong: Drawing the Paddles
// Draw the left/right paddles
for (xIndex=0; xIndex<paddleWidth; xIndex++)
{

for (yIndex=0; yIndex<paddleHeight; yIndex++)
{

itcc->SetPixel(xPaddleLeft + xIndex, yPaddleLeft + yIndex, paddleLeftColor);
itcc->SetPixel(xPaddleRight + xIndex, yPaddleRight + yIndex, paddleRightColor);

}
}

A few things to note:
• Each paddle has a common thickness and a height.
• The initial paddle positions are centered as follows:

int xPaddleLeft = xPaddleFromEdge;
int yPaddleLeft = yRes / 2 - paddleHeight / 2;
int xPaddleRight = xRes - paddleWidth - xPaddleFromEdge;
int yPaddleRight = yRes / 2 - paddleHeight / 2;

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 11

Pong: In-Bound Paddles
// ensure the paddles are in-bounds
if (yPaddleLeft <= 0) { yPaddleLeft = 0; }
if (yPaddleRight <= 0) { yPaddleRight = 0; }

if (yPaddleLeft >= yRes-paddleHeight) { yPaddleLeft = yRes - paddleHeight; }
if (yPaddleRight >= yRes-paddleHeight) { yPaddleRight = yRes - paddleHeight; }

A few things to note:
• If the paddle ever drifts off the screen, it is reset to one of the
screen boundaries.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 12

Pong: Moving the Ball

// calculate new ball coordinates
xBall += xBallVel;
yBall += yBallVel;

• Every frame, the ball’s position is updated by adding on the
ball’s velocity in the x and y directions. Note that if xBallVel >
0, it will move to the right. If it = 0, the ball will be stationary. If
it’s < 0, the ball will move to the left.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 13

Pong: Ball Bouncing
// Bounce off the top and bottom wall
if (yBall <= 0)
{

yBallVel = ballSpeed;
}
else if (yBall >= yRes - ballHeight)
{

yBallVel = -ballSpeed;
}

A few things to note:
• With the ball velocity scheme, note that the only two times
we want to change the ball’s y velocity are when the ball tries
to leave the screen.
• Thus, if it tries to leave the top, we make the y velocity
positive so the ball will go down. Vice versa for the bottom.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 14

Pong: Paddle Bouncing
// bounce off the paddles
if (xBall < xPaddleLeft + paddleWidth - 1)
{

// did it hit the paddle?
if ((yBall >= yPaddleLeft - ballHeight)

&& (yBall <= yPaddleLeft + paddleHeight))
{

xBallVel = ballSpeed;
}
else
{

itcc->MsgBox("WINNER!", "Right player wins! Congrats!");
isRunning = FALSE;

}
}

Let’s analyze this piece by piece.
The code for the right paddle bounce is similar.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 15

Pong: Paddle Bouncing
if (xBall < xPaddleLeft + paddleWidth - 1)

if ((yBall >= yPaddleLeft - ballHeight)
&& (yBall <= yPaddleLeft + paddleHeight))

• Here, we need to test to see whether the ball is inside a
certain range of y values. Note that for the ball to be within the
top and bottom of the paddle, it must be greater than the y
coordinate of the top of the paddle and less than the y of the
paddle’s bottom.
• If this is NOT true, then the player missed the ball.

• Here, we test to see whether the ball is one pixel to the left of
the left paddle along the x axis.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 16

Pong: Input
// keys control the paddle position
if (KEYDOWN('A')) { yPaddleLeft--; }
if (KEYDOWN('Z')) { yPaddleLeft++; }
if (KEYDOWN(VK_UP)) { yPaddleRight--; }
if (KEYDOWN(VK_DOWN)) { yPaddleRight++; }

// escape key exists
if (KEYDOWN(VK_ESCAPE)) { isRunning = FALSE; }

A few things to note:
• We can use ‘A’-’Z’ in KEYDOWN to specify that a letter is
pushed.
• The variable isRunning is used as one of the game loop
conditions to continue execution in the loop. If this is ever
FALSE, then the game loop will stop repeating.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 17

Pong: Miscellaneous
Sleep (5);

char textBuffer[50];
sprintf(textBuffer,"Player 1 Score: %d", scorePlayer1);
itcc->Text(textBuffer, x,y,color);

• This code fragment can be used to display a variable onto
the screen. I’ll update the framework with a better C++ version
sometime so that we can get in the habit of using C++ instead
of this C routine sprintf.

• We tell the computer to “go to sleep” and not do anything for
five milliseconds every frame. This causes the ball to slow
down, but it also means that user input is sampled less
frequently.

ITCC, Lecture 4 (C) 2004 Daniel Wilhelm 18

TODO

• EVERYONE: PLEASE DOWNLOAD THE LATEST FRAMEWORK
VERSION FROM THE SITE AND INSTALL IT. DO NOT USE
OLDER FRAMEWORK VERSIONS. Instructions will be posted on
installing the new framework after this lecture (they are the same as
for the HW2 framework).

• Download ITCC_HW3.zip from the site (will not be available until
Wednesday, July 14) http://www.pclx.com/itcc/, and complete the
homework exercises, emailing them (FOR THIS WEEK ONLY) to
itcc_teachers@pclx.com. Please do not resubmit solutions, even if
they are revised. All homework must be submitted by 6:00am PST
Monday, July 12.

• Some illustrative examples of the topics in this lecture are given in
ITCC_HW3.zip.

• Look over the slides for the fifth lecture before Thursday, July 15.
• If you finish with the homework, experiment!

