
ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 1

Before the lecture begins …

• Make sure you have Homework 2 turned
in.

• Please update your framework at
http://pclx.com/itcc for a version that *will*
work on your compiler. Dev-C++ (g++) is
now supported as well thanks to one of
your classmates.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 2

Lecture 5

Functions, Arrays, Bresenham’s Line
Algorithm

Intro to C++

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 3

Functions

• Functions are groups of commands that can be
executed from anywhere in your program. In
math, a function might look like this:

• Notice that it has an input, x, and an output,
f(x). If I write f(5), then the function will return
27. This is how functions work in C++ too.

() 5 2f x x= +

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 4

Function Requirements

• In C++, every function has:
– Input: Variables needed to make the function do what

it has to do.
– Output: Variable(s) that are returned from the function

once it is finished processing.

• Sometimes, however, functions do not have
inputs or outputs. When this occurs, we say that
its input or output section is void.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 5

Modular Code

• Another way to look at functions is
that they help to modularize
programming – break large programs
down into simpler tasks.

• This should always be your goal so
that a huge program to write doesn’t
overwhelm you.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 6

Modular Pong

Remember how long the Pong program was and
how confusing it seemed? Isn’t it a lot easier to
understand what’s going on now?

Initialize();

while ((itcc->Flip()) // Makes back buffer visible

&& (isRunning)) // While the game is still running

{

GetInput();

DrawGraphics();

MoveBall();

}

Shutdown();

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 7

Functions
• Generally, a function looks like this:

Output FuncName(Inputs)

• Let’s take a look at a function we’re used to:

void SetPixel (unsigned long x, unsigned long y, unsigned long color);

• Here, we see that SetPixel does not have any outputs
(void), but that it does have three inputs – x, y, and
color. We can call the function by replacing x, y, and
color with either values or variables.

Note: Technically, a function that does not return anything is called a subroutine.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 8

Function Declarations

• Functions must be declared and then defined
before they can be used in your program.

• To declare a function, just write the function
prototype at the top of a source file, terminated
with a semicolon. This tells the compiler that this
function is valid syntactically and that it will be
defined later in your code:

void SayHi(void);

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 9

Function Definitions

• A function definition is the function prototype followed by a
pair of braces with code in- between (the function body).

• Note that the variables in the input can be used within the
function body. These input variables are called parameters,
and the variable used as the parameter takes on the value
that was passed to the function.

void SayHi(unsigned long hiColor)
{

itcc- >Text(“Hi!”, 0, 0, hiColor);
}

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 10

Returns
• Functions can also have return values. Whenever this

occurs, imagine that when you call the function, the entire
function is replaced by its return value.

long AddTwo (long num1, long num2)
{

long sum = num1 + num2;

return sum;

}

• Note that functions can only return one value (although
there are ways around this discussed in future lectures).

• Also note that we use the return statement to return a
value of the type listed in the function prototype.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 11

Example
long Power (long base, long exponent); // Declaration

int main(void)
{

long numBits = 10, maxNumber = 0;

maxNumber = Power(2, numBits); // Call it!
…

}

long Power (long base, long exponent) // Definition
{

long multNum = 0, result = 1;
for (multNum=0; multNum<exponent; multNum++)
{

result *= base;
}

return result;
}

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 12

int main(void)
• Wow! Our beloved main is a function! Note that it
returns a value to the operating system telling it whether
we terminated correctly or not, and that it does not accept
any parameters.

• Note that there is another version of the main function
that has parameters taken in from the command line when
you first run your program.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 13

Arrays
• Sometimes we have lots of objects on the screen, and
we want to store all of their positions at once.

• One way of doing this would be to make lots of different
variables.

• But then what if we add a new asteroid? We’d have to
physically go into our program and add a bunch of
variables just to accommodate this! That’s why we have
arrays – contiguous blocks of memory that can store
variables right after each other that can be reached via an
index.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 14

Arrays
• We declare an array just like any other variable:

long MyArray[5];

• This declaration reserves five contiguous blocks of 32-
bits of memory for our use:

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 15

Arrays
• We can access any of these five memory locations by
using an index from the first element:

myArray[2] = 5;

• Note that here, we set the third element in our array
equal to the value ‘5’. We can access this element in the
same manner:

if (myArray[2] == 5)
{
}

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 16

Initializing Arrays
• You can also initialize an array, giving each array
element a value:

long xPos[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

• This can only be done when first initializing the array –
otherwise, the elements must be individually set:

for (int i=0; i<10; i++)
{

xPos[i] = 0;
}

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 17

Array Uses
• What are arrays useful for? What if you’re making an
explosion of pixels and need to keep track of every pixel’s
location? What if you have lots of enemies on the screen
that you need to keep track of?

• The ability to loop through an array using a for loop is
much easier than having to separately declare a new
variable for every single item on the screen despite their
similarities.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 18

Passing Arrays to Functions

• Here is how we might pass an array to a
function:

void DrawEnemies(long x[], long y[], long numEnemies);

• It would be called as follows:

long xPos[5], yPos[5];

DrawEnemies(xPos, yPos, 5);

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 19

Multidimensional Arrays

• A multidimensional array looks
conceptually like the following:

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 20

Two-Dimensional Arrays

• In reality, it is exactly like the linear one-
dimensional array. The computer will do the
math to figure out where you’re referring to.

• Declaration: long myArray[4][5]; allocates the
previous memory with four rows and five
columns.

• Accessing: myArray[2][1] refers to the square
that is the intersection of the third row and the
second column.

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 21

Example

int polyPoints[3][2] = { {5, 2}, {2, 1}, {5, 3} };

for (int y=0; y<3; y++)
{

for (int x=0; x<2; x++)
{

polyPoints[y][x] = 0;
}

}

ITCC, Lecture 5 (C) 2004 Daniel Wilhelm 22

TODO

• EVERYONE: PLEASE DOWNLOAD THE LATEST FRAMEWORK
VERSION FROM THE SITE AND INSTALL IT. DO NOT USE
OLDER FRAMEWORK VERSIONS. Instructions will be posted on
installing the new framework after this lecture (they are the same as
for the HW3 framework).

• Download ITCC_HW3.zip from the site (will be available soon)
http://www.pclx.com/itcc/, and complete the homework exercises,
emailing them (FOR THIS WEEK ONLY) to
itcc_teachers@pclx.com. Please do not resubmit solutions, even if
they are revised. All homework must be submitted by 6:00am PST
Wednesday, July 14.

• Some illustrative examples of the topics in this lecture are given in
ITCC_HW3.zip.

• Look over the slides for the sixth lecture.
• If you finish with the homework, experiment!

