
ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 1

Before the lecture begins …

• Keep working on Homework 3! Send us
questions – we have answers!

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 2

Lecture 6

Floating Point, Pointers

Intro to C++

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 3

More variables

• Some variables are floating-point. These
variables can represent non-integer numbers
and very large numbers (using scientific
notation).

• However, note that when using graphics such as
pixels, floating-point numbers must often be
truncated because pixels are discrete. This is
often a time-consuming procedure.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 4

Floating-point Variables

• float: 32 bits
– 1.17549- 38 to 3.40282e+38

• double: 64 bits
– 2.22507e- 308 to 1.79769e308

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 5

Example
void line_dda(int x1, int y1, int x2, int y2, DWORD color)
{

float k,b,y;

k = float((y2-y1))/(x2-x1);
b = y1 - k*x1;

// Note: assumes x1 <= x2
if (int x=x1; x<x2; x++)
{

y = k*x + b;
putpixel(x, int(y), c);

}
}

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 6

Casting Floating Point to Integer
• A cast looks like the following:

float xPos = 0.0;
float dxPos = 0.1;
int x = 0;

while (xPos < 640)
{

xPos += dxPos;
itcc->SetPixel(xPos, 0, pixelColor);

}

• This is typically a bad situation. A truncated version of xPos will be
sent to SetPixel, and the conversion itself is time-consuming.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 7

Pointers
• Generally, a function looks like this:

Output FuncName(Inputs)

• Let’s take a look at a function we’re used to:

void SetPixel (unsigned long x, unsigned long y, unsigned long color);

• Here, we see that SetPixel does not have any outputs
(void), but that it does have three inputs – x, y, and
color. We can call the function by replacing x, y, and
color with either values or variables.

Note: Technically, a function that does not return anything is called a subroutine.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 8

Pointers

• Pointers are often considered one of the most
difficult parts of C/C++ programming to
understand.

• A pointer is an address in memory where data
lies. In 32-bit processors, ever wonder why there
was an upper limit of using about 4Gb of memory?
A 32-bit address can refer to about 4.3 billion
bytes, assuming that the smallest addressable unit
is the byte.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 9

Pointers

• When you allocate memory to store a variable, this
memory resides somewhere in a user’s RAM. This
RAM is addressable via a 32-bit address into your
RAM. This address is simply a number referring to
a certain byte in memory.

• Think of there being 4 billion mailboxes numbered
sequentially in a long row. If we receive a number
referring to one of these mailboxes, then we can
go directly to the mailbox in question and retrieve
whatever is stored at that address.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 10

Pointers in C/C++
• The asterisk next to a data type means that the data type is

a pointer. Pointers are ALWAYS 32 bits in length because
an address is ALWAYS 32 bits long (for 32- bit processors).

• A generic pointer to ANY memory address is void *. To
declare a variable of this type:

void *myPointer = NULL;
void *videoBuffer = 0xA0000000;

• NULL is often defined as 0, meaning that the pointer DOES
NOT POINT to a memory address. It is a good idea to
always set pointers to NULL when they are not in use.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 11

Data Type Pointers

• When we place a variable type in front of the
asterisk, the data allocated for the memory
address is ALWAYS 32 bits. The data type in
front of the * merely means that we can
correctly interpret the data stored at that
address as that data type. For example:

unsigned int *videoBuffer = 0xA000000;
float *bankSalary = NULL;

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 12

Pointing to a Variable
• When we normally reference a variable, we grab that variable’s
value. When we make a pointer that points to a certain variable,
we want the address of the variable stored in the pointer, not the
variable’s value.
• To get the address in memory that a variable is stored at, we
use the ampersand symbol (&):

int totalMonsters = 100;
int *ptrTotalMonsters = &totalMonsters;

• Do you see the difference? If we did not use the ampersand,
then the pointer would point to whatever was stored at the
hundredth byte in memory!

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 13

Using a Pointer
• When we refer to a pointer, then we are referring to an
address stored in memory. If we place an asterisk in front
of the pointer variable, then we are referring to what is
stored at the address stored in the pointer:

int totalMonsters = 100;
int *ptrTotalMonsters = &totalMonsters;

cout << totalMonsters << endl; // 100
cout << ptrTotalMonsters << endl; // [a memory address]
cout << *ptrTotalMonsters << endl; // 100

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 14

Passing by Value
• When we normally call a function, all of the variables we
pass to the function are copied, and these copies are
used within the function body.

• If this occurs, how would we ever actually modify the
values of variables passed to the function?

• We can use pointers! Even if these are copied, we still
have the address of the original variable in-tact so we can
still modify its contents.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 15

Passing by Address
• Note how this technique of passing by address also
saves time by not copying the entire object being passed,
instead only copying 32 bits per parameter, regardless of
how large the parameter is.

• Here’s how it works (addNum2 is correct):

void addNum1(int num1, int num2, int *sum)
{

sum = num1 + num2; // Stores the total as the ADDRESS sum points to!
// DO NOT DO THIS!!!

}

void addNum2(int num1, int num2, int *sum)
{

*sum = num1 + num2; // Stores the total as the VALUE of sum
}

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 16

Passing By Address
int main(void)
{

int num1 = 5;
int sum = 0;
int *ptrSum = NULL;

AddNums(num1, 10, &sum); // Both statements are EQUIVALENT!

ptrSum = ∑
AddNums(num1, 10, ptrSum);

return 0;
}

int AddNums(int num1, int num2, int *sum)
{

*sum = num1 + num2;
}

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 17

Passing Arrays to Functions

• Here is how we might pass an array to a
function:

void DrawEnemies(long x[], long y[], long numEnemies);

• It would be called as follows:

long xPos[5], yPos[5];

DrawEnemies(xPos, yPos, 5);

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 18

Lighting a Pixel

• Let’s assume we have a pointer to the start of video
memory:

unsigned int *vidBuf = NULL;

• Knowing that each 32-bit pixel occupies four bytes of
memory, we can compute the location where we
should store a certain pixel and place the color at that
spot. We do this using pointer arithmetic.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 19

Pointer Arithmetic

• What if we execute:
*vidBuf = colorRed;

• This will store a pixel in the upper left-most corner of
the screen (hopefully, the color red!) since we just
stored a 32-bit value there!

• What if we execute:
*(vidBuf + 1) = colorRed;

• This will move forward one unsigned int (4 bytes) from
the start of vidBuf and store the color red there,
lighting up the second pixel on the top row.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 20

Pointer Arithmetic
• We know that the video buffer is made up of xRes by

yRes pixels, and that there are xRes pixels per row.
However, the memory is all linear, meaning that
although we imagine it being stored two-dimensionally,
it is actually like one big one-dimensional array!

• Thus, we can write an equation that specifies where
our pixel should be stored. Since there are xRes pixels
per row, to get to the start of the right row, we just
multiply the y by the xRes, then add on x (assuming
that each pixel is 32 bits):

*(vidBuf + y*yRes + x) = colorRed;

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 21

The SetPixel Function

• Thus, we obtain the following simple
SetPixel32 function:

void SetPixel32(ULONG x, ULONG y, ULONG color)
{

*(itcc->VidBuf32() + y*itcc->YRes() + x) = color;
}

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 22

TODO

• Do your best to finish and submit ITCC_HW3.zip by
6:00am PST Wednesday, July 19. If you need help,
just ask for it!

• Download ITCC_HW4.zip from the site (will be available
soon) http://www.pclx.com/itcc/, and complete the
homework exercises, emailing them (FOR THIS WEEK
ONLY) to itcc_teachers@pclx.com. Please do not
resubmit solutions, even if they are revised. All
homework must be submitted by 6:00am PST
Wednesday, July 14.

• Look over the slides for the seventh lecture.
• If you finish with the homework, experiment!

