
ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 1

Before the lecture begins …

• Finish Homework 3! Send us questions –
we have answers!

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 2

Lecture 7

Pointers II, File I/O

Intro to C++

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 3

Pointers Review

• The smallest addressable unit of RAM is the
byte (8 bits). A pointer is a 32-bit value that
holds a memory address.

• For instance, the following initializes a pointer to
point to some memory address which has
unknown contents (hence the void).

void *videoBuffer = 0xA0000000;

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 4

Pointers Review

• We can assign a new memory address in
a pointer simply by using the assignment
operator:

videoBuffer = 0xA0000000;
• If we know what type of data is stored at

the pointer’s address, we can initialize the
pointer using the data type, allowing us to
conveniently access the data:

char *response;

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 5

Pointers Review

• We can obtain the address of a variable by
using the ampersand (&), and we can
access the contents of a memory address
by using an asterisk (*):

char response = ‘y’; // set response to be yes

char *ptrResponse = NULL;

ptrResponse = &response; // ptrResponse “points to” response

*ptrResponse = ‘n’; // now response == ‘n’ too!

• Do you see how the last line modifies the
contents of ‘response’ too?

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 6

Pointers Review

• Pointer arithmetic can also be used if the
data type the pointer references is
specified. Note that adding one to the
pointer advances by the number of bytes
contained in the data type:

long myVal[3] = {100, 200, 300};

long *ptrLong = &myVal[0]; // or just myVal

long newVal = *(ptrLong + 1); // = 200

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 7

Dynamic Memory Allocation

• We typically perform static memory
allocation, reserving space for variables
when the program begins instead of while
it runs.

• However, in some cases it is unknown
how much memory we should allocate
beforehand, prompting us to dynamically
allocate it during run-time.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 8

new

• We can dynamically allocate memory
using the new operator:

char *yesOrNo = NULL;

yesOrNo = new char;

• The new operator allocates enough
memory to store the data type mentioned,
then it returns a pointer to the newly
allocated memory block.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 9

new Arrays
• Why is this useful? When the number of elements to be

allocated is unknown prior to run-time:

int *bowlSize;

int numBowls;

cout << “How many bowls do you need?” << endl;

cin << numBowls;

bowlSize = new int[numBowls]; // store only enough sizes as necessary

// initialize all sizes to zero

for (int i=0; i<numBowls; i++)

{

bowlSize[i] = 0;

}

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 10

delete

• Statically allocated memory is
automatically freed back to the OS when a
program terminates.

• Dynamically allocated memory must also
be dynamically freed, or else RAM
allocated by your program could be
reserved until the user reboots! (This is
called a memory leak.)

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 11

delete

• To free memory when you are finished using it,
use the delete operator:

delete yesOrNo;
delete [] bowlSize;

• Note that you should use [] before the variable
name to deallocate arrays (the number of
elements does not have to be specified).

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 12

Stanford’s Pointers Video
• http://www.cs.stanford.edu/cslibrary/PointerFunCppBig.avi

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 13

Example

• Let’s say that we want to allocate memory
for an uncompressed image where each
pixel is 32 bits. This could perhaps be
used as a background or as a double
buffer:

int imgWidth = 640;

int imgHeight = 480;

int pixelBytes = 4;

unsigned long *imgBuffer = NULL;

imgBuffer = new long[imgWidth*imgHeight*pixelBytes];

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 14

File I/O

• To read from and write to files in C++, we’ll use
a header file called fstream (file stream):

#include <fstream>

using namespace std;

• There are two types of streams that we can
create to a file – output streams (ofstream) to a
file and input streams (ifstream) from a file.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 15

Writing to a File
ofstream outFile(“sample_file.txt”);

outFile << “My first file!”;

outFile.close();

• This opens the file “sample_file.txt” as
write-only. Using ‘<<‘, you can write to the
outFile stream that was created any string
or variable:

int eggsInDozen = 12;

outFile << “My first file, and there are ” << eggsInDozen << “ eggs in
a dozen!” << endl;

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 16

Reading From a File
ifstream inFile(“sample_file.txt”);

int hitPoints;

inFile >> hitPoints;

inFile.close();

• This opens the file “sample_file.txt” as
read-only. Using ‘>>‘, you can read from
the inFile stream. In this case, we are
reading in a single variable that is stored in
ASCII format.

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 17

For More on Files …
• There is a LOT more about how to handle files than I can cover

here. In fact, we encourage you to go abroad onto the Internet on
these topics discussed to find more information yourselves. Here is
a great starting place for learning about C++ File I/O to get you
started:

• http://www.cpp-home.com/loobian/tutorials/file_io/index.php

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 18

Example

• Writing player stats:
int playerHealth, playerStamina, playerMagic;

ofstream outFile(“sample_file.txt”);

outFile << playerHealth << “ “ << playerStamina << “ “ << playerMagic;

outFile.close();

• Reading player stats:
int playerHealth, playerStamina, playerMagic;

ifstream inFile(“sample_file.txt”);

inFile >> playerHealth >> playerStamina >> playerMagic;

inFile.close();

ITCC, Lecture 6 (C) 2004 Daniel Wilhelm 19

TODO

• Do your best to finish and submit ITCC_HW3.zip
ASAP! Contact us if you have questions!

• Download ITCC_HW5.zip from the site (will be available
soon) http://www.pclx.com/itcc/, and complete the
homework exercises, emailing them (FOR THIS WEEK
ONLY) to itcc_teachers@pclx.com. Please do not
resubmit solutions, even if they are revised. All
homework must be submitted by 6:00am PST
Wednesday, July 28.

• Look over the slides for the eighth lecture.
• If you finish with the homework, experiment!

