
ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 1

Lecture 8

Binary File I/O, structures, Classes I

Intro to C++

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 2

File I/O

• Previously, we looked at sequential file I/O 
(Input/Output) where we proceeded through a file, 
gathering each piece of data after the prior piece.

• The files we looked at were also ASCII files, which are 
human-readable in an editor such as Notepad. Each 
character takes up 8 bits of memory.

• Binary files are not easily human-readable. Data is 
stored in these files in the same way that it is stored in 
RAM (e.g. a long would take up 32 bits and it would be 
stored with the most-significant bit as the negative flag.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 3

File I/O
• To emphasize the difference, let’s try storing the value 

unsigned char num = 65; in each type of file, then 
opening it in Notepad:
– 65
– A

• In the first case (ASCII), the value ’65’ is displayed 
because we stored ’65’ as an ASCII value. In the file, two 
bytes are stored, the first which is the ASCII 
representation of the number ‘6’, and the second which 
is the ASCII representation of the number ‘5’.

• In the Binary file, only a single byte with the value ’65’ is 
written to the file. This is interpreted by Notepad as ‘A’
because 65 is the ASCII value for the letter ‘A’.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 4

Binary Files

• Binary files are often read non-sequentially. 
For instance, we might only want to obtain a 
single value from the file, and it would be 
senseless to read in ALL of the data to only 
retrieve one byte.

• Thus, we can tell the computer to read data from 
different positions in the file; however, because 
the hard disk is slow at reading, we should not 
skip around too often (it is faster to read data in 
order than in random order).



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 5

Opening the File

ifstream inFile (“data.dat", ios::in | ios::binary); 

• Note that this is exactly how we opened our ASCII 
files, except this time we appended an extra 
parameter. The ‘|’ (pipe, bitwise-OR) allows us to 
apply both conditions to the file at once.

• ios::in allows us to open the file for reading.
• ios::binary allows us to treat the file as non-ASCII.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 6

Reading from the File
char buffer[100]; 
ifstream inFile (“data.dat", ios::in | ios::binary); 

if (!inFile.read (buffer, 100))
{

// An error has occurred
} 

• We can use the read command to read a given number of bytes from 
the current “get” cursor in the file. When a file is opened, the “get”
cursor is initially positioned at the beginning of the file.

• Note that the data is stored wherever the first parameter points to. In 
this case, we statically allocated 100 bytes of memory, but we can also 
dynamically allocate it:

char *buffer = new char[100];
…
delete [] buffer;



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 7

Seeking
inFile.seekg (100);

• The seekg function allows us to move the “get” cursor 
to another location in the file (called “seeking”). In this 
example, we move the cursor to the hundredth byte 
from the beginning of the file (absolute).

• To move to a position relative to the current cursor 
position, use seekg and the function tellg. The 
following moves the cursor 100 bytes forward from its 
current position:

inFile.seekg (inFile.tellg() + 100);



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 8

Writing to a File

• Similar commands for writing to a file exist 
(write, seekp). If you’re interested in 
finding how these work, feel free to search 
the Internet, or visit the following site:

http://www.angelfire.com/country/aldev0/cpphowto/cpp_BinaryFileIO.html



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 9

Closing a File

• Remember to close the file once you’re 
done using it so the OS knows that your 
software is finished modifying it:

inFile.close();



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 10

Structures

• Earlier, we had the problem of only being able to 
return a single variable from a function.

• One way we got around it was to send pointers
to other variables through the parameter list, 
allowing us to change their values as well.

• A third way to organize data and to modify many 
values at once is by making a structure.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 11

Structures

• In Pong, we have been faced with keeping track 
of many variables at once, all relating to a single 
ball: its x and y positions, its x and y velocities, 
and perhaps its color.

• What if we had more than one ball? Then we 
could make all of these variables arrays instead, 
but in any regard, we’d still have lots of free 
variables floating around unorganized.

• Wouldn’t it be useful if we could group these 
together and say they’re properties of a ball?



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 12

Pong Ball Structure
• We can! And this is called a structure, or for short, a struct. Here is 

how we’d group together all of the ball properties:

struct Ball

{

int x, y;

int width, height;

int velX, velY;

};

• Notice that we’ve taken all of the variables that are unique to a single 
ball and grouped them together in one unit called a structure. By 
doing this, we’re saying that they are all properties of a ‘Ball’.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 13

Pong Ball Structure
• We also sort of made up our own variable type called ‘Ball’. We can 

actually count how large it is by summing the bytes required to store 
its members then rounding up to the nearest 32-bit boundary 
(compilers often do this automatically for processing speed).

• In the last case, we have six integers, for a total of 6 ints*4 bytes/int = 
24 bytes (which is divisible by 4 so it isn’t rounded up).

• The values in a structure are furthermore stored contiguously in 
memory! Reordering the variables inside the structure will reorder 
their location within memory as well. The topmost variable is always 
stored first in memory.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 14

Accessing Structures
• It’s easy to statically allocate structures and access their member 

variables. For instance:

Ball pongBall; // declare a Ball object

pongBall.x = 50;

pongBall.y = 100;

• Notice that we access each member using a ‘.’ character. After 
initially declaring the object, we can treat its members like any other 
variable.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 15

Dynamically Allocating Structures

• Structures can be dynamically allocated as well:

Ball *pongBall = new Ball;

…

delete pongBall;

• Now wait a second. How would we access pongBall’s members?

(*pongBall).x = 50;

• This could get confusing if we have structs inside of one another:

(*pongBall).((*parentBall).x) = 50;



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 16

-> Notation
• Thus, a new notation was born, the ->:
(*pongBall).x = 50;

pongBall->x = 50;

(*pongBall).((*parentBall).x) = 50;

pongBall->parentBall->x = 50;

• You’ve already seen examples of using -> after itcc in the graphics 
framework! For instance:

itcc->SetPixel(0, 0, myColor);



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 17

Classes
• Hmm, but in the graphics framework, I’m calling a … function?

• Classes are new to C++ -- they can not only hold variables, but 
functions as well! Thus, a pong ball would be a good example of an 
object – an entity that performs actions and has properties. A ball can 
initialize, it can move, it can change color, and it has lots of the 
properties discussed before. One way we can turn the ball structure
into a class is on the next slide.



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 18

Pong Ball Class
class CBall

{

private:

int m_x, m_y;

int m_width, m_height;

int m_velX, m_velY;

public:

CBall(int x, int y, int width, int height); // Constructor

~CBall(void); // Deconstructor

int GetX(void); // Accessor functions

int GetY(void);

int SetVelX(int velX);

int SetVelY(int velY);

int Move(void); // Other functions

};



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 19

m_, C, and g_
• Often, programmers will prefix member variables with ‘m_’ and 

global variables with ‘g_’. Classes are often prefixed with an upper-
case ‘C’.

• This is a remnant of Microsoft’s Hungarian Notation. This notation 
attempted to be a mechanism such that one could tell the type of any 
variable just by looking at the variable name. It often led to long, 
complex-looking variable names so it isn’t used as often nowadays.

• However, the good parts of it are still being used as above. (The 
notation is heavily used in the DirectX and Windows SDK 
documentation).



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 20

public vs. private
• Privately declared variables and functions can only be accessed 

from functions within the class itself.
• Publicly declared variables and functions can be accessed and set at 

any time.

• In general, all member variables should be declared as private and 
only accessed through accessor functions. The general idea behind 
this is that your class should be treated as a black box by other 
programmers. In other words, no one else except for you should need 
to know how your class works – all that anyone else needs to know 
should be specified by your class’s interface with the outside world 
(i.e. the public variables and functions).



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 21

The Constructor
• Every class can have one or more constructors. This is a function 

that can be called when an object of the class is instantiated. The 
constructor always has the same name as the class.

• For instance, to call the CBall constructor, you can do one of the 
following:

CBall pongBall(0,0, 10,10);
CBall *pongBall = new CBall(0,0, 10,10);



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 22

The Deconstructor
• Every class can have a single deconstructor. This is automatically 

called whenever an object of the class is about to be destroyed – the 
programmer does not call this function. Often, the constructor and 
deconstructor are used to dynamically allocate and deallocate
memory.

• The deconstructor always has the same name as the class, prefixed 
with a tilde (~).



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 23

Member Functions
• Member functions are always defined inside the class, but they are 

usually declared outside of it (the class definition is often inside a 
header file and the declaration of its functions is often in a cpp file). 
To ensure that a function is declared as the member of a class, prefix 
it with the class name:

int CBall::GetX(void)

{

return (m_x);

}



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 24

Example: Using a class
int main(void)

{

CBall myBall(0,0, 10,10);

myBall.SetVelX(1); myBall.SetVelY(1);

myBall.Move();

}

int main(void)

{

CBall *myBall = new CBall(0,0, 10,10);

myBall->SetVelX(1); myBall->SetVelY(1);

myBall->Move();

delete myBall;

}



ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 25

TODO

• Download ITCC_HW4.zip from the site (will be 
available soon) http://www.pclx.com/itcc/, and 
complete the homework exercises, emailing 
them (FOR THIS WEEK ONLY) to 
itcc_teachers@pclx.com. Please do not 
resubmit solutions, even if they are revised. All 
homework must be submitted by 6:00am PST 
August 2.

• This is the second-to-last assignment! Lectures 
will end Monday, August 2!

• If you finish with the homework, experiment!


