
ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 1

Lecture 9

BMP Files, Bitwise Operators, RSA
Encryption

Intro to C++

The following slides may be used solely for personal, non-commercial uses. Redistribution is forbidden without consent of the author.

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 2

BMP Structure
BITMAPFILEHEADER

BITMAPINFOHEADER

UNCOMPRESSED
24-BIT DATA (REVERSED)

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 3

Steps for Loading

1. Load the two bitmap headers.
2. Dynamically allocate enough memory to

hold the bitmap.
3. Load the bitmap data (usually reversed)

into the newly allocated memory.

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 4

Header Structure
typedef struct tagBITMAPFILEHEADER {

WORD bfType; // if not ‘MB’, is NOT a BMP!

DWORD bfSize;

WORD bfReserved1;

WORD bfReserved2;

DWORD bfOffBits; // byte offset of data from beginning

} BITMAPFILEHEADER, FAR *LPBITMAPFILEHEADER, *PBITMAPFILEHEADER;

BITMAPFILEHEADER bitmapHeader;
inFile.read ((char *)&bitmapHeader, sizeof (BITMAPFILEHEADER));

NOTE: 4-byte alignment required!

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 5

Info Structure
typedef struct tagBITMAPINFOHEADER{

DWORD biSize;
LONG biWidth; // Width
LONG biHeight; // Height
WORD biPlanes;
WORD biBitCount; // Bits per pixel (should be 24 or 32)
DWORD biCompression; // Should be BI_RGB
DWORD biSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;

} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;

BITMAPINFOHEADER bitmapInfoHeader;
inFile.read ((char *)&bitmapInfoHeader, sizeof (BITMAPINFOHEADER));

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 6

BMP Data

• The BMP data begins at bfOffBits
bytes from the beginning of the file.

• Each BMP row is padded so that it is a
multiple of 4 bytes, so read the bitmap
row-by-row.

• Note that if biBitCount == 24 then each
color will be represented by three bytes.

• If the biHeight is positive, then the
image’s rows will be reversed – the first
row will correspond to the last row in your

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 7

Wotsit?

You can find more on the BMP file format (and just about
any other file format) by visiting the below website:

www.wotsit.org

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 8

Bitwise Operators

• Bitwise operators are operators that
perform direct logic operators on individual
bits.

• We’ve already seen examples of these –
the left and right bit-shift operators!

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 9

Bitshifts

• ‘<<‘ shifts the bits in a variable to the left.
• ‘>>’ shifts the bits in a variable to the right.
• Both operators insert zeros and remove ones.
• Examples:

unsigned char myVar = 34; // 001000102
myVar = myVar << 2; // 100010002
myVar <<= myVar; // 010000002
myVar = myVar >> 3; // 000010002

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 10

Bitshift Trick

• Note that the bitshift is an incredibly fast way to
multiply or divide by powers of two! This method used
to be magnitudes faster than the equivalent
multiplication or division:

unsigned char myVar = 34; // 001000102 (34)

myVar = myVar << 2; // 100010002 (34 * 2^2 = 136)

myVar <<= 3; // 010000002 ((136 * 2^3)%256 = 64)

myVar = myVar >> 3; // 000010002 (64 / 2^3 = 8)

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 11

Bitwise Operators
• Boolean operators can be applied to bits. From these operators,

we can derive most traditional operations such as addition and
division.

NOT (~): ~0 = 1, ~1 = 0.

AND (&): 0 & 0 = 0, 0 & 1 = 0, 1 & 0 = 0, 1 & 1 = 1.

OR (|): 0 | 0 = 0, 0 | 1 = 1, 1 | 0 = 1, 1 | 1 = 1.

XOR (^): 0 ^ 0 = 0, 0 ^ 1 = 1, 1 ^ 0 = 1, 1 ^ 1 = 0.

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 12

Bitwise Operators

• More complex examples:

11001100 11001100 11001100 ~ 11001010

& 01010101 | 01010101 ^ 01010101 ----------

---------- ---------- ---------- 00110101

01000100 11011101 10011001

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 13

Bitmasks

• How can we pack several flags into a single variable,
for instance to send as parameters to a function?

#define MB_OK 1 // 000000012
#define MB_OKCANCEL 2 // 000000102
#define MB_YESNO 4 // 000001002
#define MB_YESNOCANCEL 8 // 000010002

#define MB_ICONHAND 16 // 000100002
#define MB_ICONQUESTION 32 // 001000002
#define MB_ICONEXCLAMATION 64 // 010000002

#define MB_NOFOCUS 128 // 100000002

mbParam =
MB_OK | MB_ICONHAND =
000100012

mbParam & MB_OK = 1

mbParam & MB_ICONHAND = 1

mbParam & MB_YESNO = 0

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 14

RSA Cryptography

• RSA – Rivest, Shamir, and Adleman, three professors
who discovered this means of encryption.

• RSA relies on the fact that it is easy to multiply two
large prime numbers, but it’s very difficult to factor the
product.

• Other easy one way yet hard the other mathematical
techniques exist such as elliptical curves.

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 15

RSA Cryptography

• We initially enter the plaintext, which is typically an
unencrypted text string.

• The algorithm works, and it returns cyphertext, the
encrypted plaintext.

• Using RSA, keys are needed to create and decypher
the cyphertext. Public keys are accessible by everyone
and are used to encode plaintext. Private keys are
required to decode plaintext encrypted with a certain
public key.

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 16

RSA Cryptography

• Computer scientists typically use Alice and Bob (and
occasionally more) to describe the ones transmitting the
message, and Eve as the eavesdropper trying to read
or alter the plaintext.

• Let’s go through a sample encryption.

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 17

Sample Encryption

• Alice wishes to send a message to Bob.
• Bob picks two prime numbers and finds their product:

P = 37, Q = 17

PQ = 629

• Bob now gives the product to Alice.
• Bob also gives a second number which has no common

factors with (P-1)(Q-1) = 576 (we’ll use E=19).

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 18

Sample Encryption

• Alice first changes her message (“ACE”) into numbers
(A = 1, B = 2, … Z = 26), so ACE = 135.

• To translate this into cyphertext, Alice performs a
simple calculation:

M^E mod PQ = 135^19 mod 629

= 50

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 19

Sample Encryption

• Now Bob can use the following formula to find the
original plaintext. Choose a value X such that D is an
integer:

d = (X(P-1)(Q-1) + 1) / E

= (X(576) + 1) / 19

= 91 (when X = 3)

• And now we can find the original plaintext:
(M^E)^d mod PQ = (50)^91 mod 629

= 135

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 20

Implications
• Note that Bob sent Alice a public key, PQ and his number E. Bob

retains the private key necessary to decode the text, P and Q.
• Note that only Bob knows (P-1)(Q-1), so the algorithm’s security rests

on the fact that it is difficult to factor PQ.
• In reality, the prime numbers chosen typically are hundreds of digits

long (e.g. 128- or 256-bit encryption)
• To practically use this algorithm, we must have a good way of

exchanging keys (this is not specified by RSA). The first popular
exchange was the Diffie-Hellman key exchange.

• Try encrypting some numbers or even writing your own encryption
software!

• And this is what started the E-Commerce revolution!

ITCC, Lecture 8 (C) 2004 Daniel Wilhelm 21

TODO

• Download ITCC_HW4.zip from the site (will be
available soon) http://www.pclx.com/itcc/, and
complete the homework exercises, emailing
them (FOR THIS WEEK ONLY) to
itcc_teachers@pclx.com. Please do not
resubmit solutions, even if they are revised. All
homework must be submitted by 6:00am PST
August 5.

• This is the second-to-last assignment! Lectures
will end Thursday, August 5!

• If you finish with the homework, experiment!

